Contents

1 Installation

1.1 Requirements
1.1.1 Operating System
1.1.2 System Libraries
1.2 Quick Install
1.3 Complete control of Building
1.4 Complete control of Installation,
2 Usage
2.1 Synopsiso e
2.2 Live Capture vs Trace Analysis
2.3 More Control
2.4 Process Signalling
3 Output
3.1 Logs e
3.2 Histograms
3.3 RRD e
3.4 Packet Level Traces e
3.5 Privacy concernso
3.6 Post Processing
3.7 Storage Considerations L Lo

4 RRD Module

4.1 RRDtool Installation
4.2 RRD Configuration
4.3 Tstat RRD andthe Web,
4.3.1 Database Structure
4.3.2 Web Configuration o o

5 Runtime Module
6 Global Constants

7 DPMI Module
7.1 Tstat Configuration for DPMI
7.2 DPMI Configuration for Tstat

8 Bayesian Classification of Skype Traffic

LW W W w ww

— =0 o O

—_

13
14
16
16
16
18
18

19
19
19
20
20
21

21

25

26
26
27

27

9 Libtstat library
9.1 Link the Libtstat library o oo
9.2 Libtstat API

10 Author Informations
11 Acknowledgment

12 License

29
30
30

32

32

32

1 Installation

This document provides basic information for the installation, configuration and usage of
Tstat and the Bayesian framework for Skype traffic identification. A more general descrip-
tion of the program as well as other documentation can be found in the Tstat homepage
http://tstat.tlc.polito.it

1.1 Requirements
1.1.1 Operating System

Tstat is tested on Linux systems (currently Ubuntu, Debian, RedHat, and Cent0S, using 2.x
and 3.x kernels), and on Mac 0S X (starting from 10.6 Snow Leopard to the current 10.10
Yosemite). It includes support for compilation for Android, and has been reported working
on OpenWRT. It should work under FreeBSD, NetBSD, and other unix-1ike systems, (although
we don’t have any of those platforms for testing purposes). If you are able to run Tstat on
other OSes, we’ll be happy to include them in the list.

1.1.2 System Libraries

Tstat requires, by itself, a few library that should already be installed on your system, such
as libpcap (available from http://www.tcpdump.org) and the DAG drivers (available from
http://www.endace.com), in case you use such hardware. With these libraries, you are ready
to capture and process the traffic flowing in your LAN.

Since Tstat might use pthread to improve the performance in case of real time analysis,
your system must support POSIX threads as well if you want to profit of this feature. How-
ever, keep in mind that threaded execution is only an optional feature, and is necessary only
for online traffic analysis, so that this is not a strict requirement: for this reason, threading is
disabled by default.

Finally, to use the RRD functionalities, you also need to have a working installation of
RRDtool (available from http://oss.oetiker.ch/rrdtool/).

1.2 Quick Install

Assuming that you want version 3.x.y:

wget http://tstat.polito.it/download/tstat-3.x.y.tar.gz
tar -xzvf tstat-3.x.y.tar.gz

cd tstat-3.x.y

./autogen.sh

./configure [--enable-libtstat] [--enable-zlib]

make

make install (with root privileges)

This commands install a executable file named tstat in /usr/local/bin.

1.3 Complete control of Building

The most important elements in the Tstat’s package are:

tstat/

tstat-conf/

libtstat/

include/

libtstat-demo/

doc/

doc/HOWTO

README AUTHORS NEWS INSTALL Changelog

The tstat directory contains the source code of Tstat which is also the default building
target. Beside Tstat it can also be compiled the Libtstat, a shared library which allows
to an external program to access to the traffic analysis functions of Tstat. In the include
directory there is the header file of the library instead in the 1ibtstat-demo directory there
is a simple program of example that shows how to use the Libtstat (see Libtstat library for
more information about the Libtstat API).

The building of the Libtstat library is disabled by default but is provided a configuration
option to control this feature

./configure --enable-libtstat # build tstat, libtstat and libtstat-demo
./configure # build only tstat

It is possible, if Z1ib is found on the system, to compile Tstat to support the direct creation
of zlib compressed logs and dump files.

./configure --enable-zlib # build tstat with zlib support

At the end of configure is printed a small report:

tstat Version 3.0
-lpcap -lpthread -1m -lrrd -1z

Prefix: ’/usr/local’

Package features:

- pcap yes
- z1lib yes
- rrd yes

- libtstat no

This indicate if the libtstat has been selected or not for the building and if either Librrd or
Z1ib were found in the system, in which case they are automatically added in building the
project.

Tstat’s source code uses some preprocess definition to enable/disable some features, like
for example the DAG support which is disabled by default. These definitions are declared in
the tstat/Makefile.conf each with a specific description about its purpose so it should be
easy change to behaviour in the building process commenting/uncommenting some lines.

NB: remember to run autoreconf from the root of the package every time a change in
these file is performed!!!

The building of Libtstat is separated from the building of Tstat so 1ibtstat/Makefile.conf
file defines the set of option specific for the Libtstat, while tstat/Makefile. conf is specific
for Tstat.

In the directory tstat-conf there are some examples of configuration files needed by
Tstat; for example the set of local addresses (-N option), the configuration of the histograms
(-H), RRD tool (-R), runtime (-T) and bayesian framework (-B).

In the directory doc there are some plain text files that describes the format of logs files
generated by the analysis and in doc/HOWTO there is howto document in different file formats.
README, AUTHORS, INSTALL, NEWS and ChangeLog instead are plain files that describes some
general information about the package like the authors, the last new features of the tools,
etc...

1.4 Complete control of Installation

The default prefix for installation is /usr/local so Tstat executable in installed in /usr/local/bin
and Libtstat is installed in /usr/local/lib. Anyway a different prefix can be specified at
configuration time

./configure --prefix=/absolute/path/where/install/tstat

Libtstat-demo is only a demonstration tool so is build only a local executable that is not
installed.

Libtstatis provided with pkg-configsupportsoalibtstat.pcisinstalled in /usr/1ib/pkg-config
and typing

pkg-config --cflags --libs libtstat
it should appears an output like
-I/usr/local/include -L/usr/local/lib -1m -lpthread -lpcap -lrrd

that indicates the CFLAGS and LIBS options used in the building process.

2 Usage

There are few things to know to run Tstat: first, you are required to have a knowledge of the
network that you want to monitor. Second, there are the few options that are described in
this section.

2.1 Synopsis
Tstat primary usage is as a command-line tool; the synopsis of the command is the following:

Usage:
tstat [-htuvwpgSLO] [-d[-d]]
[-s dir]
[-N file]
[-C filel]
[-Y filel
[--keyvalue key | --keyfile file | --keybase64 file]
[-w file]
[-B bayes.conf]
[-T runtime.conf]
[-G globals.conf]
[-z file]
[-A mask]
[-H 7|file]
[-6
[-F filel
[-Z

[-r RRD_out_dir] [-R rrd_conf]
[-1] [-i interface] [-E snaplen]
[-f filterfilel

<filel file2>

Options:
-h: print this help and exit
-t: print ticks showing the trace analysis progress
-u: do not trace UDP packets
-v: print version and exit
-w: print [lots] of warning
-c: concatenate the finput files
(input files should already be in the correct order)
-0: force the strict(er) privacy mode for logs
-d: increase debug level (repeat to increase debug level)

-s dir: puts the trace analysis results into directory
tree dir (otherwise will be <file>.out)
-N file: specify the file name which contains the
description of the internal networks.
This file must contain the subnets that will be
considered as ’internal’ during the analysis.
Each subnet can be specified in one of the following types:
- <Network IPv4/MaskLen> on a single line
130.192.0.0/16
- <Network IPv6/MaskLen> on a single line
2001:db8:: /32
- <Network IPv4/NetMask IPv4> on a single line
130.192.0.0/255.255.0.0
- Pairs of lines with <Network IPv4> and <NetMask IPv4>
130.192.0.0

255.255.0.0
If the option is not specified all networks are
considered internal

-M file: specify the file name which contains the
description of the MAC addesses that are to be considered internal.
MAC addresses must be in the 6 digit - hex notation.
Example:
11:22:33:44:55:66
66:55:44:33:22:11
If this option is specified, the -N param is ignored.

-C file: specify the file name which contains the
description of the cloud networks.
This file must contain the subnets that will be
considered as belonging to a specific group of networks
(cloud) during the analysis.
Subnets are specified like in the -N option.

-Y file: specify the file name which contains the
description of the encrypted networks.
This file must contain the subnets for which the IPv4 address
will be anonymized using the Crypto-PAn algorithm.
Subnets are specified like in the -N option.

--keyvalue key: specify a string to be used as the key for address

anonymization.
Valid only if the -Y option is also specified. Only one option
among --keyvalue, --keyfile, and --keybase64 can be used.

--keyfile file: specify the file name which contain the plain text key
for address anonymization.
Valid only if the -Y option is also specified. Only one option
among --keyvalue, --keyfile, and --keybase64 can be used.

--keybase64 file: specify the file name which contain the Base64 encoded
key for address anonymization.
Valid only if the -Y option is also specified. Only one option
among --keyvalue, --keyfile, and --keybase64 can be used.

-W file: specify the file name which contains the
description of the whitelisted hosts/networks.
This file must contain the subnets for which the IPv4 address
will be whitelisted and *NOT* anonymized using the Crypto-PAn algorithm.
Subnets are specified like in the -N option.
Meaningful only if the -Y option is also specified.

-H ?: print internal histograms names and definitions

-H file: Read histogram configuration from file
file describes which histograms tstat should collect
’include histo_name’ includes a single histogram
’include_matching string’ includes all histograms
whose name includes the string
special names are:
’ALL’ to include all histograms
’ADX’ to include address hits histogram
for example, to include all TCP related
and the address hits histograms, file should be:
include ADX
include_matching tcp
’adx_mask N’ is a special command to define the
size of the netmask used to aggregate the address histograms
(e.g. ’adx_mask 24’ to use the 255.255.255.0 mask)

-g: Enable global histo engine
-3: No histo engine: do not create histograms files
-L: No log engine: do not create log_x* files
-1: Use old (v1l) log_mm format
-B Bayes_Dir: enable Bayesian traffic classification
configuration files from Bayes_Dir
-T runtime.conf: configuration file to enable/disable dumping
of traces and logs at runtime
-G globals.conf: configuration file to provide at startup new values
to the internal global configuration constants
-z file: redirect all the stdout/stderr messages to the file specified
-A mask: enable XOR-based anonymization for internal IPv4 addresses.
‘mask’ is a decimal, octal, or hexadecimal value.
-6: disable the L4 processing of IPv6 datagrams
-X: disable the DN-Hunter DNS engine
-F file: specify the file name which contains the
list of DNS domains to be included/excluded from the
TCP traffic dump. Activated in the runtime configuration (-T)
-Z: Create gzip compressed (.gz) log files.
-P: Create gzip compressed (.gz) pcap dump files.
-R conf: specify the configuration file for integration with
RRDtool. See README.RRDtool for further information
-r path: path to use to create/update the RRDtool database
-1: enable live capture using libpcap
-i interface: specifies the interface to be used to capture traffic
-E snaplen: specifies the snaplen size used to capture traffic.
It might be overridden by the interface slen size
-f filterfile: specifies the libpcap filter file. Syntax as in tcpdump

file: trace file to be analyzed
Use ’stdin’ to read from standard input.

Note:
When tstat is called with no arguments (on the command line),
it will first check if a file <tstat.conf> is provided in the

same directory where the execution started.
In the latter case, arguments will be read from <tstat.conf>
rather than from the command line

Supported Input File Formats:

tcpdump tcpdump format -- Public domain program from LBL
Snoop Sun Snoop format -- Distributed with Solaris
etherpeek etherpeek format -- Mac sniffer program
netmetrix Net Metrix format -- Commercial program from HP
ns ns format - Network simulator ns2 from LBL
netscout NetScout Manager format

erf Endace Extensible Record format

tcpdump live Live capture using pcap/tcpdump library

2.2 Live Capture vs Trace Analysis

Tstat can sniff and analyze traffic on-line through the use of either the libpcap library or
Endace DAG cards. The use of Tstat is very easy, especially if you have experiences with
tcpdump, although tcpdump’s knowledge is not required to profitably use Tstat. Moreover,
advanced users will enjoy the ability of on-line processing of traffic captured with DAG
cards.

As a minimal configuration, you must describe your network to Tstat. Indeed, in order
to distinguish forward and backward paths, Tstat needs to know which host IP addresses
can be considered as “internal” to the monitored network. There are four different format to
specify the internal subnets and if, for example, we use Politecnico di Torino subnets, which
are 130.192.0.0/16 and 192.204.134.0/24, we can choose to use one of the following for-
mats:

<Network IPv4/MaskLen> on a single line

130.192.0.0/16
192.204.134.0/16

<Network IPv6/MaskLen> on a single line

2100:abcd:ef00::/40
fe80::/64

<Network IPv4/NetMask IPv4> on a single line

130.192.0.0/2565.255.0.0
192.204.134.0/255.255.0.0

(only for backward compatibility) pairs of lines with <Network IP> and <NetMask
IPv4>

130.192.0.0
255.255.0.0
192.204.134.0
2565.2565.0.0

Note that formats can be mixed in the configuration file and comment lines can be spec-
ified using ’#° so using following configuration is still correct

this is a comment
130.192.0.0/24
192.204.134.0/255.255.0.0
192.168.0.0

255.255.0.0

IPv6 networks can be always included, but they will be considered only if IPv6 support has
been enabled at compilation time (as reported by tstat -v).
In the directory tstat-conf are placed the two files net.all and net.private

>cat tstat-conf/net.all

Mask to indicate that all IP subnets are supposed to be internal
The same result is obtained omitting the -N option
0.0.0.0/0.0.0.0

::/0

>cat tstat-conf/mnet.private

Example mask to consider as internal all the subnets in the
198.168. private addresses range

192.168.0.0/16

that can be useful for generic elaborations. In any case, if the -N option is not specified all
networks are considered internal.

We can now run Tstat to capture the traffic flowing across our network, with the follow-
ing command, which must be run as root (as you need to capture packets by putting the
Ethernet interface in promiscuous mode). The simplest command is the following:

./tstat -1 -N net.conf

Beside live-capture, it is possible to run Tstat on a previously collected trace file, where the
trace format can be any of the following;:

Supported Input File Formats:

tcpdump tcpdump -- Public domain program from LBL

snoop Sun Snoop -- Distributed with Solaris

etherpeek etherpeek -- Mac sniffer program

netmetrix Net Metrix -- Commercial program from HP

ns ns -- network simulator from LBL

netscout NetScout Manager format

erf Endace Extensible Record Format

DPMI Distributed Passive Measurement Interface (DPMI) format
tcpdump live Live capture using pcap/tcpdump library

Tstat will try to read trace files given as input, and to automatically identify the correct dump
format. Trace files can be compressed or uncompressed, and Tstat will automatically detect
the compression tool used (supported formats are compress, gzip, bzip2, 7z).

Without loss of generality, we assume to use the first of the above formats. The calling
syntax is similar to the previous one, with the exception of the absence of the live-capture

10

switch -1 and the presence of the name(s) of the file(s) that have to be processed. For exam-
ple, the following command can be used to analyze a trace file named LAN. dump . gz. Results
of the analysis will be stored in a subdirectory named tracel; as before, net.conf contains
the subnet description that will be considered as “internal” during the analysis.

./tstat -s tracel -N net.conf LAN.dump.gz

2.3 More Control

We can control the interface that we want to sniff from as well as the output directory name
as follows:

./tstat -i ethl -1 -s test -Nnet.conf

Moreover, we can also pipe Tstat input using the special keyword stdin as input, as in the
following command (piping ns2 output to Tstat is left as an exercise for the reader):

tcpdump -s 80 -i ethO -w - ip | ./tstat -Nnet.conf -spiped stdin

In this case, Tstat is fed by tcpdump’s output, and the latter has been instructed to capture
packets on the ethO device, collecting the first 80 bytes (to track uniquely packet headers)
of IP packets only, and send the output to stdout. Moreover, since Tstat understands the
libpcap syntax, filters can be stored in text files, as in the following command sequence:

echo "vlan and ip and host 10.0.0.1" > tcpdump.conf
./tstat -i ethO -1 -f tcpdump.conf -N net.conf -s filtered

2.4 Process Signalling

While Tstat runs, it is possible to interact with the program using Unix signals. This might
be useful if Tstat is executed unsupervised, or without full terminal control (redirecting std-
out/stderr using the -z option).

Currently Tstat reacts to the USR1 and INT signals.

Sending a USR1 signal to a running Tstat process makes it print the current flow statistics
to standard error and then resume its operations.

Sending a INT signal to a running Tstat process makes it gracefully terminate its opera-
tions, writing all the statistics to the output files, flushing and closing the files, and printing
the overall flow statistics to stderr before exiting. This is equivalent to interrupting the pro-
gram pressing Ctr1-C from the control terminal.

If Tstat is running unsupervised, you should avoid terminating the process using the
KILL signal (*signal -KILL’ or ’signal -9’), since it will possibly leave the log files in an
inconsistent state, and you should therefore use either the INT or the TERM signals (’*signal
-INT’ or ’signal -TERM’).

11

3 Output

Tstat collects several network-layer as well as transport-layer measurements, which are de-
scribed in full details in http://tstat.polito.it/measure.shtml. As output, Tstat produces four
different types of files: histograms, round robin database, packet level traces and other plain
text logs.

By default Tstat collect all the output results in a directory with the same name of the
input trace appending the suffix .out or stding in case of a live capture:

./tstat -N net.conf tracel.pcap trace2.pcap # output dir: tracel.pcap.out, trace2.pcap.out
./tstat -N net.conf -1i ethO # output dir: generate stdin
./tstat -N net.conf -s tracel tracel.pcap # output dir: tracel

In any case, inside the output directory is generated a subdirectory named with the times-
tamp of the first packet analyzed and inside this directory the files generated are organized
as follow:

<output_root>

¢-- 23_00_28_Jun_2008.out
|-- 000
| ‘-—- histo_logs
|-- 001
| ¢-—— histo_logs

| -- LAST

I ‘--- histo_logs
|

|-- traces00

| ¢--—— dump_traces
|-- tracesO1

| ¢--- dump_traces

‘—— other_logs
This means that the RRD output files are not collected inside the output directory, in fact
there is a specific command line option (-r) to indicate where this results have to be placed.

Recall that Tstat assumes that traces are collected on a bidirectional link, such that both
data and control packets belonging to the same flow are observed; with the help of the fig-
ures below, we will explain the different classification of measurements used by Tstat.

Tstat identifies hosts based on their IP address. Given the description of the internal hosts
through the -N command line option, Tstat distinguishes among incoming, outgoing and local
measurements. Packets whose destination is an internal host and whose source is an external
host will contribute to incoming measurements (red arrow in the top figure), whereas packets
going in the opposite direction will contribute to outgoing measurements (green arrow in the
top figure). Finally, in some cases it is possible that Tstat observes packets whose source and
destination host belong to the internal host set: in such cases, measurements will be classified
as local (blue arrow in the top figure). Notice that packets whose source and destination IP
addresses belong to the external host set will be discarded. For example, consider a setup in
which Tstat is attached to a snoop port of a LAN switch. Then Tstat will be fed by i) outgoing

12

The Internal
Internet Network

s2c Tstat
Web

Server

HTTFE
Client

packets going to the default gateway, ii) incoming packets coming from the default gateway,
iii) local packets.

Note that if you either do not know or do not want to distinguish between internal,
external and local hosts, you may enable the -DLOG_UNKNOWN (in tstat/Makefile.conf or
libtstat/Makefile.conf) directive when compiling. Tstat will then be less strict, but re-
sults may be difficult to be correctly interpreted.

Considering instead the role of the host that sent the packet, statistic are collected dis-
tinguishing between clients (green arrow in the bottom figure) and servers (red arrow in the
top figure), i.e., host that opens a connection and and host that replies to connection request.
Recall that while TCP connections are well defined, UDP (and RTP/RTCP) connection defi-
nition is more fuzzy. In this latter case, Tstat will consider as client the source IP address of
the host that sent the first packet of that flow, while the server will be the host identified by
the destination IP address of the same packet.

Therefore, when applicable, Tstat will keep track of measurements referring to the same
measured quantity by appending a specific tag (see Sec. 3.2) or using a flag (see Logs).

3.1 Logs

Tstat creates a set of TXT flow files in the main output directory: log_-tcp_complete, log_tcp-nocomplete,
log_udp_complete, log_mm_complete, log_video_complete, log_skype_complete, log_chat_complete

and log_chat_messages. TCP flows can be either completed or not depending whether Tstat
observed the 3-way handshaking or not; in the first case, all the measured indexes rela-
tively to each flow will be collected in the log_tcp_complete; in the latter case, flows are
considered as garbage and stored in log_tcp_nocomplete; Similarly, a complete log keeping

13

track of each UDP flow measured indexes is maintained in the log_udp_complete file. Being
UDP basically a connectionless protocol, it is impossible to distinguish among complete and
nocomplete flows in this case.

Furthermore the following log files are created: 1og_video_complete and log_streaming_complete
for TCP video streaming flows (i.e. RTMP or HTTP-based video services like YouTube),
log mm_complete for multimedia flows (i.e. RTP, RTCP, etc), log_chat_complete for IM pro-
tocols (i.e. MSN, Jabber, etc) and log_skype_complete for Skype traffic.

Description of the file format of each log file can be found in http://tstat.polito.it/measure.shtml.

If Tstat has been compiled with Zlib support, it will directly create gzip compressed logs
(.gz) when the command line option -Z is used. Internal compression might be CPU de-
manding: before enabling it, you should consider its possible effects on the Tstat perfor-
mance.

3.2 Histograms

Histograms are generated periodically to generate the distribution of a given quantity within
a time interval. Tstat collects all the measurement data during a given measurement interval
defined by the MAX_TIME_STEP parameter, which is hard-coded in the tstat/param.h file to
5 minutes. Please, note that changing the MAX_TIME_STEP parameter may affect RRD creation
as well. For example, considering the IP packet length, Tstat updates, for each observed IP
packet, the counter of the number of observed packets with a particular length. At the end
of the measurement period, Tstat then saves the values stored in the histogram in a subdi-
rectory named with a incrementally counter of three digits, resets all the internal values, and
then restarts the samples collection.

To separate statistics respecting the verse (input, output or local) and the role of a peer in
the communications, is appended a tag to files generated:

_out

outgoing: from an internal host to an external host
_in
incoming: from an external host to an internal host

_loc

local between two internal hosts

_c2s

going from the Client to the Server

_s2c

going from the Server to the Client

Considering the last example of previous section, we run:

./tstat -s tracel -N net.conf 23_00_28_Jun_2008.dump.gz

The output generated by Tstat consists of a directory tree like the following:

14

tracel
¢—- 23_00_28_Jun_2008.out
[-- 000
| | -- addresses<tag>
| -- flow_number<tag>
|-- ip_len_in<tag>

|-— udp_port_flow_dst<tag>
-- udp_tot_time<tag>

| -- addresses<tag>
|-- flow_number<tag>
|-- ip_len_in<tag>

|-- udp_port_flow_dst<tag>
-- udp_tot_time<tag>

[

| | -- addresses<tag>

| |-- flow_number<tag>
| |-- ip_len_in<tag>
|

|

| -— udp_port_flow_dst<tag>
-- udp_tot_time<tag>

Subdirectories with increasing numbers will be created for each measurement period with
the format nnn/; histograms collecting measurement results will be created in these direc-
tories; note that the histograms referring to the last partial time period will be stored in the
LAST subdirectory. The option -g adds also the subdirectory GLOBAL containing the global
histograms for the whole measurement period.

The -H has to be used to enable the histogram engine, specifying a configuration file of
? to have a complete list of the available histograms. The syntax of the configuration file is
really simple:

include ALL # add all histograms

include ADX # histogram to count how many times ip address are used
adx_mask 16 # define the size of the netmask for the ADX histogram

include ip_len_in # histogram of the ip packet length of the input traffic
include_matching ip_ # match all the histograms which name start with ’ip_’

Histogram data are saved using simple ASCII files: the first line contains a description of the
measured quantity, while the second line contains the parameters of the histograms (mini-
mum and maximum values, and size of each bins). The list of all the counter index and val-
ues is then dumped. To limit the file size, the corresponding entry is omitted if the counter
is zero. For example, the histogram of the packet length ip_len_in looks like:

#IP packet length - incoming packets

#min=0 bin_size=4 max=1600
28 7

15

36 277
40 11760
44 3463

Simple Post Processing tools are available to automatically manage the histogram database.

3.3 RRD

The RRD output consists of a series of binary files stored in the RRD format. Tstat forces a
particular naming notation of such files, which follows the configuration rules described later
in Sec. 4.2.

The RRD can then be queried with the standard RRDtool commands, such as rrdcreate,
rrdupdate, rrdgraph, rrddump, rrdfetch, rrdtune, rrdlast, rrdxport, to whose
manual pages we refer the reader for further informations.

3.4 Packet Level Traces

Inside Tstat there is a Deep Packet Inspector - DPI which is able to identify traffic com-
munications at application level looking the composition of the payload of packets.

This feature is controlled by the Runtime module and the output files are placed in sub-
directories named tracesNN where NN is an counter incremented every time the runtime
configuration is changed. In any case, for each configuration, the input traffic in is splitted
in traces with windows of 1 hour, that is, for example, if we start the dump at 9:00 am

traces00/udp_complete.pcap0 #all the udp traffic from 9:00 to 10:00
traces00/udp_complete.pcapl #all the udp traffic from 10:00 to 11:00

All the traces are in pcap format and, because of the level 2 headers are in general useless
for statistic purpose, each packet dumped is composed of a bogus Ethernet header (contains
only zeros expect for the type field which is IP) followed by the original packet starting from
IP header. The input packets can also be truncated after a specific amount of bytes which
can be configured using the snap_len specific option in the configuration file.

If Tstat has been compiled with Zlib support, it will directly create gzip compressed traces
(.pcap.gz) when the command line option -P is used. Internal compression of the packet
traces is highly CPU demanding: before enabling it, you should consider its possible effects
on the Tstat performance.

3.5 Privacy concerns

To cope with privacy concerns and possible legal requirements, Tstat has a few options to
mitigate the user information exposed in the log files.

One main privacy concern is the presence of the actual user IP addresses in logs. To hide
this information, Tstat implements two possible solutions.

The first one is a simple XOR-based obfuscation of the IPv4 address, activated by the
command line option -A mask. The 32-bit mask is applied only to internal IPv4 addresses,
as defined by either the -N or the -M command line options. If no internal network is defined,

16

all IPs are considered internal and they are all obfuscated, reducing the usefulness of the logs
to identify well known services. The XOR-based obfuscation is applied as soon as the IP
datagram is parsed, so any saved packet level trace will contain the obfuscated IP addresses.

The second solution is a complex cryptographical anonymization of the IP addresses,
based on the well known Crypto-PAn[*] algorithm. Crypto-PAn is a prefix-preserving IP
anonymizer, and it is activated providing a list of IP networks to be anonymized using the
command line option -Y. The networks are indicated in a format similar to the one used
for the -N and -C command line options. Any IP address matching one of those networks
is marked for encryption. Since the anonymization operations are CPU-intensive, any IP
address is anonymized only once, the translation cached, and it is actually used only when
the IP address must be printed in the logs. Since the original IP address is still used internally
by Tstat and the translation is only used when printing the logs, any saved packet level
trace will contain the original non encrypted IP addresses. It is possible indicate a list of IP
addresses and networks to be excluded from the encryption process using the -Ww command
line option with a file in the same format used for the -N option. Addresses satisfying both
the -Y and the -W lists will be whitelisted and will appear unencrypted in the log files.

The encrytion key used by the Crypto-PAn algorithm can be provided either directly on
the command line, using the --keyvalue option, or from a file, using either the --keyfile
or the --keybase64 options. The --keyfile option can be used for a plain text ASCII key,
while the --keybase64 option will treat content as a Base64 encoded key, so its suitable for
an encoded binary key. In any case the key is supposed to be 32 bytes long: longer keys are
truncated to 32 bytes, and shorter keys are padded with zeros. If no key is provided, a key
is generated reading 32 random bytes read from /dev/random, so it will change every time
Tstat starts. Due to the blocking nature of /dev/random, it might take some time for Tstat to
start if there is not enough entropy on the system random generator.

The key used in each Tstat session is always saved in Base64 format in a file named
CPanKey_<datetime> (where datetime is the current time of the day) that is created in the
log directory root (the one indicated by the -s command line option). The generated file is
suitable to be later used as the argument of the --keybase64 option.

For the sake of simplicity IPv6 addresses are currently anonymized as 4 IPv4 addresses
(after some masking to hide trivial bit patterns): this should maintain the prefix-preserving
property and should be sufficient to provide the required privacy. IPv6 addresses are cur-
rently not obfuscated (-A). There is currently no support in Tstat for obfuscation of TCP/UDP
port numbers, since it is of limited usage in a traffic analysis tool such as Tstat. Obfuscated
(-A) addresses are not explicitely indicated in the log files (if they are internal, and obfusca-
tion was active, they are actually obfuscated). The presence of anonymized (-Y) address is
explicitely indicated in the log files in the c_iscrypto and s_iscrypto columns. The -A and
-Y options are not mutually exclusive, so it is possible to obfuscate the internal addresses
and, at the same time, anonymize another, possible overlapping, set of IP addresses.

Beside the privacy issues related to the IP addresses, logs contain information that might
be considered sensitive, i.e. the URLs information in log http_complete and the YouTube
VideolDs in log video_complete. The command line option -0 make Tstat run in privacy
mode: in this mode, the runtime.conf option httplog_full_url is forced to 0, so that full
URLs cannot be logged in log_http_complete, and the YouTube Video IDs in 1og_video_complete
are masked as *XXX’.

[*] http://www.cc.gatech.edu/computing/Telecomm /projects/cryptopan/

17

3.6 Post Processing

This section could be a separate HOWTO, since this argument cannot be treated exhaus-
tively. Perl, Awk, Ruby Your-Favorite-Scripting-Language scripts are definitively best candi-
dates to post-process log_x files.

In the Tstat download page and in the source archive, you can find plot_time.pl and
plot_cum.pl, two Perl scripts that may be useful to produce either i) time or ii) aggregated
plots over different time spans. They directly access the histogram database created by Tstat.
Please, refer to http://tstat.polito.it/software.php#£postprocess.

In the source code, in scripts/MySQL/, you can also find a few Perl scripts to load the
main log_x files in a simple MySQL database, for further post-processing.

RRD files can be manipulated to obtain indirect metrics through the RPN manipulations
mechanism provided by RRDtool.

3.7 Storage Considerations

To give the user a rough idea of the size of the output, let us consider a 6 hours long, 1.6GB
packet-level trace containing 21M packets, sniffed with tcpdump that was used throughout
this tutorial. Tstat identified and analyzed about 729K flows, of which about 495K were TCP
flows, trashing 20K of them into log_nocomplete. Referring to the Sec. 3 above shown, we
can express the following observations:

Histogram

As previously described, in order to take into account the flow directions, several his-
tograms are dumped for the same variable var_{in,out,loc,c2s,s2c}. Currently,
about 60 measurement indexes, described in http://tstat.tlc.polito.it/measure.shtml, are
logged, for a total of 180 files. Each of the 000/, 001/ ... LAST/ directories is about
500KB-1MB depending on the network traffic and on the file system block allocation
mechanism.

Therefore, as a rule of thumb, you can count about 1MB of storage due to histograms
every 5 minutes of traffic (independently of the amount of actual traffic load during
the 5 mins...). This can be useful in order to set the periodic dump timer to the desired
trade off among time granularity versus storage size required.

RRD

The rrd/ directory is, per construction, of fixed size: this should not be a surprise,
since this is the goal of RRD. Therefore, the size of the database does not depend on
the amount of network traffic processed, but rather on the RRD configuration. For
the standard configuration supplied with Tstat, which is also the one used in our Web
server, the whole database occupy only 6MB and consists of about 250 files.

Logs

The total size of the log files amount to about 200MB, which gives a 8x reduction factor
w.r.t. the packet-level trace; or, the storage cost of each flow is about 400 bytes.

Note that the 1og_* can be further compressed, using the -Z Tstat command line option
or gzip to less than 50MB, which gives a further 4x size gain; however, for a matter of
performance, is preferable to compress the log files offline.

18

Finally, consider that on a common PC architecture (specifically, Intel P4 2.40GHz equipped
with 2GB of RAM and 7200rpm hard-disk), the whole trace elaboration took only 4 minutes;
thus, the analysis rate is roughly 85Kpkts/sec or 3Kflows/sec.

4 RRD Module

4.1 RRDtool Installation

In order to get Tstat RRD module working, you will need to install RRDtool first (refer to the
homepage of RRDtool http://oss.oetiker.ch/rrdtool/ to accomplish this step). The autoconf
file configure of Tstat then should automatically add the RRD support if it find one (see
Sec. 1.3).

4.2 RRD Configuration

Tstat RRD configuration is very easy, being centralized in a single text-file, which allows
to specify at runtime what measurements should be monitored. The operating frequencies
for the RRD sampling (i.e., the parameters for the temporal averages) are hard-coded into
rrdtool.h and are chosen to mimic MRTG behavior. Again, take care that modifying the
MAX_TIME_STEP parameter may affect the RRD management as well.

The RRD configuration file, specified through the command line option -R, should con-
tain one line for each of the Tstat parameters that have to be integrated into a Round Robin
Database. Each line allows to specify which statistical properties of the variable has to be
tracked, as follows:

tstat_varl avg min max stdev var idx:e,f,g,h,other prc:i,j,k

where avg,min,max,stdev,var,idx,prc,other are keywords, whereas 1, j,k are floating

point numbers and e, f,g,h integer values; note that the list of indexes (e.g., TCP ports),

values (e.g., packet size) and percentiles are comma separated. The name of the variables

are Tstat internal ones: they can be seen by executing ./tstat -H, Alternatively, you can

directly look into the 000/ ... LAST/ directories or or at http://tstat.polito.it/measure.shtml
Valid configuration lines are, e.g.:

#

inspect IP packet length average, specific values and distribution
#

ip_len_in avg prc:50,90,95,99 idx:40,1500,other

#

TCP well known ports
#

20 FTP-DATA

21 FTP

22 SSH

23 telnet

25 SMTP

80 HTTP

.

19

#
tcp_port_dst_in idx:20,21,22,23,25,80,o0ther

#

good approximation of the distribution of the RTT,

taking into account only the incoming path contribution
#

tcp_rtt_avg_in prc:0.1,1,5,10,25,50,75,90,95,99,99.9

where, evidently, the lines starting with a # sign are treated as comments. Our Web server is
currently running with the configuration available at http://tstat.polito.it/download/rrd.conf.

For each specified quantity defined in the rrd.conf file, a corresponding file will be cre-
ated. For example, consider that the generic configuration line:

tstat_var avg min max stdev var idx:e,f,g,h,other prc:i,j,k

will produce the following files (13 in total):

tstat_var.{avg,min,max,stdev,var}.rrd
tstat_var.idx{e,f,g,h,oth}.rrd
tstat_var.prc{i,j,k}.rrd

4.3 Tstat RRD and the Web

From the Tstat web site, you can download the most up-to-date version of tstat_rrd.cgi,
which is the CGI script that renders the Web interface. Here is some basic tips to get it
working; if you wonder how to write your own graph templates, then you are probably
skilled enough to get it on your own :)

4.3.1 Database Structure

The CGI scripts allow to browse on the fly the RRD database structure. The rrd_data di-
rectory is the root of the tree, where each directory contains either i) other directories (i.e.,
is a box) or ii) a RRD-database, in which case the node is a leaf and will be shown in the
interface. In case that a directory is a plain box, it may optionally contain some files (specif-
ically {HEADER,FOOTER,README}.{html,txt}) that will be rendered by tstat_rrd.cgi. By de-
fault, the cgi script tries to load the html version; otherwise, it tries to displays ”<pre> ‘cat
FILE® </pre>" if such a FILE exists; finally, it will display a default message held in $de-
fault{ README} hard coded in the script.

Here is an example of the rrd_data directory which holds part of the RRD database ac-
cessible from the Tstat web page.

rrd_data/
| -- Example
|-- GARR
| |-- garr-live
| ‘-- garr-old
‘-- Polito
[-- 2000

20

| |-- Apr

| [-= Jun

| |-- Jun,post155
|

—- Current

4.3.2 Web Configuration

The web configuration really depends on your web server configuration. Few dependencies
are required, most notably, the RRD Perl library from the RRDtool installation.
It is advisable to store the Tstat RRD files everywhere you want, and then create a sym-
bolic link named rrd_data that points to it (i.e., to the root of the RRD database tree). Simi-
larly for the directory where the rendered images should be stored (defaults to cgi-bin/rrd_images)
and can be a symbolic link as well. The names of these symbolic links can be redefined in
the configuration section of tstat_rrd.cgi if needed:

specify path to the root of the rrd database tree
by default, I assume there is a symbolic link in cgi-bin/
named rrd_data

#
#
#
#
#
#
#
#
$RRD_DATA = ’rrd_data’;

same thing for image directory

in my case, var/www/cgi-bin/rrd_images is

a symbolic link to "/var/www/html/rrd_images";
from the html browser’s perspective

$IMG_DIR = "rrd_images";

5 Runtime Module

This module has been developed with the specific target to try to control the disk occupation
and to have a minimal interface to execution process to enable/disable some feature without
restarting it. In particular, the system controls two specific outputs: the writing of log files
and packet level traces, so is possible to disable the writing of logs (histograms, RRD and all
the others) if they became to bigs, and to dynamically change the set of packet level traces to
collect.

The module works with simple polling system that is it periodically tests if a configura-
tion file, specified with the -T option when Tstat is executed, is changed from the previous

21

check and in this case, the new configuration replace the previous one. The polling process is

controlled by the global constants Runtime_Config_Idle and Runtime_Mtime_Counter, that

can be overriden at startup with the -G option, as described in the Global Constants section.
The configuration file has an ini file syntax:

> cat tstat-conf/runtime.conf

print logs on dis
[1og]

histo_engine = 0
rrd_engine = 0
log_tcp_complete =
log_tcp_nocomplete
log_udp_complete =
log_mm_complete = 0
log_skype_complete
log_chat_complete =
log_chat_messages =
log_video_complete
log_http_complete =

log options
[options]

k

logs created by histogram engine
logs created by rrd engine

0
=0
0

o O

0

tcplog_end_to_end = 0O

tcplog_layer7 = 0
tcplog_p2p = 0
tcplog_options = 0
tcplog_advanced = 0
httplog_full url =

videolog_end_to_end = 0

videolog_layer7 = 0O
videolog_videoinfo
videolog_youtube
videolog_options

0

o O

videolog_advanced = 0O

protocols to dump
[dump]
snap_len = 0

slice_win = 0

(]

udp_dns =
udp_rtp =
udp_rtcp = 0
udp_edk = 0
udp_kad = 0
udp_kadu = 0
udp_okad = 0

o

H OB H HH

0

0

tcp connections correctly terminated
tcp connections not properly terminated
udp flows

multimedia

skype traffic

MSN/Yahoo/Jabber chat flows
MSN/Yahoo/Jabber chat messages

video (YouTube and others)

all the HTTP requests/responses

H OH H H H H HH

End_to_End set of measures (RTT, TTL)

TCP Options set of measures
Advanced set of measures

H O H O H H

TCP End_to_End set of measures (RTT, TTL)

Additional video info (resolution, bitrate)
YouTube specific information

TCP Options set of measures

Video-related Advanced mesurements (rate)

H o H O H H

max num of bytes to dump from ip hdr (included)

0 == all bytes

dimension (in secs) of the dumping window

used to slice the input traffic in different traces
0 == no slicing

KadU network
obfuscated kad

22

Layer7 set of measures (TLS cert., message counts)
P2P set of measures (P2P subtype and ED2K data)

Partial (=1) or full (=2) URLs in log_http_complete

Layer7 set of measures (TLS cert., message counts)

udp_gnutella = 0
udp_bittorrent =
udp_dc = 0
udp_kazaa = 0
udp_pplive = 0
udp_sopcast = 0
udp_tvants =
udp_ppstream
udp_teredo =
udp_vod = 0
udp_sip = 0
udp_dtls = 0
udp_quic = 0
udp_unknown = 0 # all the udp traffic that the DPI doesn’t recognize

0

o I O
o

tcp_videostreaming = 0

ip_complete = 0 # all the ip traffic (not consider L4 type and if it’s used)
udp_complete = 0 # all the udp traffic

tcp_complete = 0 # all the tcp traffic

udp_maxpackets = 0

udp_maxbytes = 0

tcp_maxpackets = 0

tcp_maxbytes = 0

dns_filter = 0 # enable the dns filtering

stop_dumping_mask = O # bitmask to control the dumping of tcp packets
based on flow classification

The file in composed of the three sections log, options, and dump which indicate which type
of log and dump trace to create, and additional information on the log content. Except for
a few exceptions, all features are on/off type i.e. 1 and 0 values are used to enable/disable
them. One exception is snap_len, used to indicate the maximum number of bytes dump
from the input packet starting from IP level included. For example, supposing to have a
simple IP + UDP packet, using snap_len = 40 it will be written a packet of 54 bytes

14 (bogus ethernet) + 20 (IP) + 8 (UDP) + 12 (payload)

For UDP traffic it can be specified a set of applications so to have a specific dump trace for
each application of interest. The unknown traffici.e. the traffic that the Tstat’s DPI is not able
to identify, is placed in a separated trace. For example, using the following configuration

udp_rtp =1
udp_edk =1
udp_bittorrent = 1
udp_unknown = 1

23

it’s expected to have 4 traces i.e. three protocols/applications (RTP, eMule, Bittorrent) and
the unknown (for example DNS traffic).
Classified TCP complete flows cannot be ”safely” dumped, since classification happens

after the 3-way handshaking finished, so saved flows would be incomplete. tcp_videostreaming

is an exception, used to dump TCP flows that were classified as video through the Streaming
DPI engine (the ones logged in 1log_video_complete), even if the 3-way handshaking and the
first flow payload packets would be skipped. This could be activated if you're interested in
performing a secondary analysis on characteristics of the video stream.

Beside the traces at application level, it’s possible to create three type of aggregated
traces. In particular, udp_complete is all the UDP traffic (both applications specific and un-
known), tcp_complete is all the TCP traffic, while ip_complete refers to all the traffic that
use IP as level 3 without considering the level 4. In other words, ip_complete is the ag-
gregation of TCP, UDP and all the other network protocols that use directly IP (ICMP, IPIP,
ESP, ...). The three options are NOT to complementary so it’s possible to enable all of them
contemporary but this obviously means that a TCP/UDP packet it will appear in more than
one trace so particular attention should be taken.

When dumping all TCP (tcp_complete) or UDP (udp_complete) traffic, it is possible to
limit the dumping of each flow to either a maximum number of packets or a maximum
number of bytes trasferred. For example, to save just the first 30000 bytes or the first 30
segments of each TCP flow (whichever condition if reached first), you can use

snap_len = 0
tcp_complete = 1
tcp_maxpackets = 30
tcp_maxbytes = 30000

udp_maxpackets and udp_maxbytes provide the same functionality for UDP flows. If both
xxx_maxpackets and xxx_maxbytes are set to 0, the complete TCP/UDP flows will be saved,
with no size limitation.

dns_filter enables the filter based on DNS names requested by clients. You can see the
tstat-conf/DNS filter_example.txt file for more details. A filename must be provided with
the -F command line option, and its content cannot be changed at runtime.

stop_dumping mask is a bitmask that is used to stop dumping tcp packets of flows we
are not interested to. It is a bitmask based on protocol.h types that the con_type can take.
Setting this to 0 will keep logging everything. Setting a bit to 1 will stop logging packets of
those protocol as soon as the classifier set those flags (e.g., setting it to 1025 (1+1024), all http
and smtp traffic will be discarded). As for other parameters, the value can be set either as a
decimal number, or as an hexadecimal number (prefixing it with 0x). Note that we cannot
discard those packets of a flow that we have seen before actually identifying the protocol.
For example, three-way-handshake segments will be always there. Examples:

stop_dumping_mask = 262143 # => 11 1111 1111 1111 1111 discard everything
we know except UNKNOWN

262142 # => 11 1111 1111 1111 1110 log only UNKNOWN and HTTP

stop_dumping_mask
stop_dumping_mask
stop_dumping_mask
stop_dumping_mask

0 # => log everything

24

O0x3DFFF # => 11 1101 1111 1111 1111 log only UNKNOWN and SSL/TLS
1 # => 00 0000 0000 0000 0001 log everything which is not HTTP

During the runtime execution of Tstat, the configuration file is controlled periodically look-
ing for changes in the options. In this way, when Tstat is used for online monitoring, is pos-
sible to interact with the dumping module without the need to restart the program. When
a change is identified a new tracesNN output directory is created in the root output direc-
tory to collect all the new traces and is also generated a file called log.txt that indicate the
dump configuration used for that particular dump. Since the parameters in the options sec-
tion control the output format of the log files, when a change is sensed to any of them, the
old log files are closed, and a new output directory is created.

6 Global Constants

The dimensions of the internal data structures and some key operational parameters are
defined in Tstat at compilation time (in source file param.h). To allow some flexibility in Tstat
deployment on live probes, like tailoring the capture process to the actual traffic, the default
internal values can be overriden, providing new values at startup using the -G command
line option and a ini file.

The ini file dedicated to the global constants is identified by the [globals] header, valid
only in -G context and that cannot appear in the runtime configuration Tstat ini file (-T).

A complete commented example of ini is provided in the Tstat source distribution as the
file tstat-conf/globals. conf. We report here a simplified list of the available parameters.

> cat tstat-conf/globals.conf

[globals]

Important for the system dimensioning

max_tcp_pairs = 180000 # Max number of tracked TCP flows
max_udp_pairs = 360000 # Max number of tracked UDP flows

hash_table_size = 2000003 # Size of the TCP/UDP flow hashes

Important for the system performances

tcp_idle_time = 300.0 # Timeout to close regular TCP flows [seconds]
udp_idle_time = 200.0 # Timeout to close regular UDP flows [seconds]
tcp_singleton_time = 10.0 # Timeout to close singleton TCP flows [seconds]
udp_singleton_time = 10.0 # Timeout to close singleton UDP flows [seconds]
gc_cycle_time = 5.0 # Duration of the Garbage Collection cycle [seconds]
gc_split_ratio = 10000 # Number of partitions of the Garbage Collection cycle

Change only if the default values are too small

max_adx_slots = 70001 # Size of the hash for IP address hit counter
max_internal_hosts = 100 # Max number of internal networks (-N)
max_cloud_hosts = 100 # Max number of ’cloud’ networks (-C)
#
#

max_crypto_hosts = 40 Max number of encrypted networks (-Y)

max_white_hosts = 100 Max number of whitelisted networks (-W)
max_internal_ethers = 20 # Max number of Ethernet addresses for internal traffic (-M)
max_crypto_cache_size = 130000 # Size of the LRU cache used in address encryption
dns_cache_size = 100000 # Size of the IPv4 DNS cache used by the DNhunter module

dns_cache_size_ipv6 = 1000 # Size of the IPv6 DNS cache used by the DNhunter module

25

Change to tailor the logging activity
runtime_config_idle = 21.0 # Check interval for runtime.conf file (-T)
runtime_mtime_counter = 3 # Check cycles for runtime.conf (-T)

max_time_step = 300.0 # Interval for histogram/RRD collection [seconds]
dirs = 12 # Number of Max_Time_Step intervals for each log directory
rate_sampling = 1.0 # Interval for TCP flow rate measures [seconds]

Very specific, change at your risk

max_seg_per_quad = 100 # Max number of segments in flow recostructions
list_search_dept = 200 # Lenght of the linear search for TCP/UDP flows
entropy_sample = 60 # Number of bytes per packet used for encryption detection
entropy_threshold = 3.7 # Entropy threshold used for encryption detection

min_delta_t_tcp_dup_pkt = 2000.0 # Interarrival time for TCP DUP detection [microseconds]
min_delta_t_udp_dup_pkt 1000.0 # Interarrival time for UDP DUP detection [microseconds]

Parameter names are case-insensitive. Values in the [globals] section can have integer
or floating point value. Types are loosely enforced, i.e. integer values can be provided to
floating point parameters, but not the opposite. A warning or an error message is generated
when the value or the type of a parameter is not correct or cannot be safely converted to the
right type.

7 DPMI Module

To the experienced DPMI user, it can turn very useful to think of Tstat in terms of a DPMI
consumer, thus suitable for live usage. Basically, two configuration files need to be provided
in this case.

7.1 Tstat Configuration for DPMI

Especially for this purpose, Tstat can be executed without any argument on the command
line, provided that a file named tstat.conf exists in the same path where the tstat com-
mand has been executed. Note that the filename MUST be in this case tstat.conf

In the latter case, arguments will be read from tstat . conf rather than from the command
line, which makes Web-based execution easier — it just requires the creation of a text file.

Typically, the content of the file will be one of the two following cases. When only the
RRD module need to be turned on, which is specially suitable for the persistent monitoring
of a network link:

-D dpmi.conf -S -R rrd.conf -r data.rrd

Or, in the case where more detailed transport layer logs and histograms are to be generated,
such as for shorter ad-hoc experiment:

-D dpmi.conf -s data

Note that the dpmi . conf filename, which is the object of the next section, is customizable.

26

7.2 DPMI Configuration for Tstat

This file is used by Tstat in order to properly set-up the DPMI library and, possibly, its filters.
There are only two keywords that are interpreted by Tstat, and the whole content of this file
is passed to the DPMI’s createfiler library call. Tstat-keywords are prepended by the
tstat: prefix, to solve any ambiguity, and are related to the type of stream and measurement
direction. More specifically,

tstat: (file|(tcp|udp|eth) [:port])

Specify whether a tracefile or a network socket (and in this case, which port) is the
source of DPMI traffic. Note that in the case where a tracefile is used, there is no
real need to specify this, since the format recognition happens automatically; thus,
the tstat:file keyword is provided for completeness. Conversely, options such as
tstat:eth and tstat:tcp:32449 are necessary in order for network sockets to prop-
erly be setup.

tstat:MP:CI

This option is used to define the traffic directionality, specifying what network card
interface (CI) and the measurement point (MP) are related to incoming traffic from ex-
ternal sources. Referring to the DPMI library internals:

CI <-> char nic[8];
MP <-> char mampid[8];

In order to provide a safe fallback or a missing configuration, unless otherwise speci-
fied, the first received frame is assumed to be “incoming”, thus arbitrarily determining the
incoming CI:MP couple.

8 Bayesian Classification of Skype Traffic

The Bayesian framework is configured through a directory (-B command line option) con-
taining several configuration files. A example of configuration is provided under the tstat-conf
directory so please refer to this directory reading this explanation. In the configuration di-
rectory two files have to be placed, named pktsize.conf and avgipg.conf which define
the parameters used by the classification framework to describe the packet size and average
inter-packet gap.

Both files have the same format specified in the example below:

o ___

* / \

/ BayesConf ~ __________ /
¥\ ____ /.:nonsns

#

feature name

Known Skype features:

27

PKTSIZE

AVGIPG

#

FEATURE AVGIPG
#

#
W

default flags

USE_LOG 1

NORMALIZE 1

AUTO_OTHER

#

WINDOW_SIZE 1

CLASS_LEN 250

MIN_THRESHOLD le-25
AVG_THRESHOLD -3.5
WIN_THRESHOLD -3

#

#
#

class definition

+H*

syntax

DISCRETE class P{class}

GAUSSIAN class P{class} mu sigma

GAUSSIAN+ class P{class} N (wl,ml,s1) .. (wN,mN,sN)
#

#

#

note: P{class} may be "="

GAUSSIAN model = 10
GAUSSIAN mode2 = 20
GAUSSIAN mode3 = 30
GAUSSIAN mode4d = 40
GAUSSIAN modeb = 50
GAUSSIAN mode6 = 60

N NNNDDNDN

The keyword FEATURE is used to specify which type of statistic the configuration file is ref-
ered to. In the example above we are dealing with the average inter-packet gap, and speci-
fying PKTSIZE we will describe packet size feature.

Each feature then has a set of flags and other options values that can be used to change
the configuration of the NBC engine. Default parameter are strongly suggested, but in case
you want to experiment with different combinations, you can try to change them.

USE_LOG:

If set to 1, the function log10() is applied to the probability values instead to use the
actual probability value; this avoids eventual underflow errors when dealing with very
low probabilities.

NORMALIZE:

If set to 1, the beliefs computed are re-normalized in the range 0:1; this option is valid
only if USE_LOG is disabled (by default is enabled);

28

WINDOW_SIZE:
The number of packets after which recompute beliefs (by default after each packet);

CLASS_LEN:

The maximum value assumed by the feature and is used to compute class probability
distribution functions (by default is 0);

MIN_THRESHOLD:

A positive small value that replace the value 0 in the computation of beliefs to avoid
underflows because of logarithm function (by default 1e-33);

AVG_THRESHOLD:

The static threshold used to compare the maximum computed belief and take the clas-
sification.

WIN_THRESHOLD:

A static threshold is used to count the number of individual samples (rather than their
mean) that passes a more restrictive test (indeed the window threshold is greater than
the average threshold).

Important configuration parameters are the “modes” which must be carefully defined.
Modes are the set of p.d.f. that describe the expected distribution of the feature.

Modes may be described as a DISCRETE function, that is a generic distributions, or as a
GAUSSIAN function, that is a gaussian (or a superposition of a gaussian) distribution.

Each mode then is associated with a name and a probability which is used as a weight.
If °=’ is used instead of a weight specific values, all weight are assumed to be uniform.

The special type GAUSSIAN+ may be used to define a mode composed of N different gaus-
sian distributions. Each function is defined by mean and standard deviaton sigma and the
weight of the mixture have to be specified.

Assuming that you have configured both average ipg and packet size feature in a direc-
tory named bayes_conf_dir the classification engine can be enabled simply specifying the
-B command line option:

using live capture mode
./tstat -1 -B <bayes_conf_dir> -N net.conf

using a packet dump trace
./tstat -B <bayes_conf_dir> -N net.conf tracefile.dump

9 Libtstat library

Libtstat is a shared library that can be used by external programs to access to the statistics
and classification features provided by Tstat. As described in the Install section of this docu-
ment, to enable the building of Libtstat library is needed to provide a configure option

./configure --enable-libtstat

29

9.1 Link the Libtstat library

When the library is installed in the system using make install the following messages are
printed on the console

Libraries have been installed in:
/usr/local/lib

If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use the ‘-LLIBDIR’
flag during linking and do at least one of the following:
- add LIBDIR to the ‘LD_LIBRARY_PATH’ environment variable
during execution
- add LIBDIR to the ‘LD_RUN_PATH’ environment variable
during linking
- use the ‘-Wl,--rpath -W1,LIBDIR’ linker flag
- have your system administrator add LIBDIR to ‘/etc/ld.so.conf’

See any operating system documentation about shared libraries for
more information, such as the 1d(1) and 1ld.so(8) manual pages.

This indicate where the library has been installed and how to link that to some program. The
most simple thing to do, is to use the native libtool support for automake, that is, assuming
that program name is the name of the executable of the tool to generate, it is needed to add
the following lines to Makefile.am of the tool:

program_name_LDADD = -ltstat -lpcap -lpthread -1m
program_name_LDFLAGS = -Wl,--rpath -Wl,<libtstat_dir>

This allow a fined control on the directory where the library has been installed. Anyway, if it
has been installed in a standard library location (as /usr/1ib), instead of the previous lines,
it can be added

AC_CHECK_LIB([tstat], [tstat_next_pckt],, AC_MSG_ERROR([missing ’tstat’ library]))

in configure.ac of the current project. This automatically look for the presence of a function
tstat_next_pckt() in a system library named 1ibtstat. In case of error of error print a message
stopping the configuration process, instead in case of success, are automatically added all the
linking options needed to build the program (see the autotools files in 1ibtstat-demo for a
complete example).

9.2 Libtstat API

Tstat’s elaborations are perfomed starting from the level 3 (IP) so its is input is a simple array
of bytes that contains a packet starting from level 3. This means is the external program that
has to open a trace or read a packet from a network card and to parse all the level 2 headers
just to have a pointer to the IP header. From this point of view, it can be said that Tstat is
simply a wrapper around Libtstat that add only the support to parse a set of level 2 headers.

30

int tstat_init (char *config fname)

config fname is a file name containing a set of Tstat options, one for each line

>cat tstat-conf/tstat.conf

#-s outdir # output directory

-N net.all # network config file

#-B bayesdir # directory of the bayes config files
#-d # debug

If NULL is provided, the library use . /tstat.conf as filename.

void tstat_new_logdir (char *filename, struct timeval *pckt_time)

This function has to be called before the process of the first packet and allow to generate
the output directory using this hierarchy:

<filename>.out
<pckt_time>.out

int tstat_next_pckt (struct timeval *pckt_time, void *ip_hdr, void *last_ip_byte, int
tlen, ip_direction)

This function enable the processing of a new packet. pckt_time is the timestamp of the
packet, ip_hdr is a pointer to the first ip byte, last_ip_byte is a pointer to the last ip
byte, and tlen is the number of total bytes (captured). Instead ip_direction indicates
if the packet is incoming or outgoing. Possible values :

0: use the address based classification provided by the -N option
1: packet is treated as having internal source and internal destination (local packet)

2: packet is treated as having internal source and external destination (outgoing
packet)

3: packet is treated as having external source and internal destination (incoming
packet)

4: packet is treated as having external source and external destination (external
packet, will be ignored)

tstat_report *tstat_close (tstat_report *report)

This function flush to file all the pending statistics and fill a tstat_report structure with
some general results.

void tstat_print_report (tstat_report *report, FILE *file)

This function print a formatted report to file using tstat_report data.

31

10 Author Informations

Active authors:

Maurizio Munafo’ <maurizio.munafo@polito.it>
Alessandro Finamore <alessandro.finamore@telefonica.com>

Other active authors:

Marco Mellia <marco.mellia@polito.it>
Dario Rossi <dario.rossi@telecom-paristech.fr>
Martino Trevisan <martino.trevisan@studenti.polito.it>

Other authors:

Andrea Carpani, Luca Muscariello, Dario Bonfiglio, Robert Birke,
Vinicius Gehlen, Ignacio Bermudez

Other links:

Telecommunication Networks Group (TNG)
DET, Politecnico di Torino
http://www.tlc-networks.polito.it

11 Acknowledgment

Many people contributed to the development of Tstat. Tstat would never have seen the
light had not TCPTrace being invented. Many thanks to Shawn Ostermann and to the Ohio
University for their great program.

Many Master and PhD students took part in the development and debugging of Tstat.
Naming all of them would be impossible. We would then like to thank Luca Muscariello for
the entropy generated in the TCP anomalies identification, and Prof. Marco Ajmone Marsan
and Prof. Fabio Neri who gave us the moral and scientific support to continue investing in
Tstat.

12 License

Copyright (c) 2001-2015 Politecnico di Torino. All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

32

